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The Homogenous Relaxation Model (HRM) is used to study thermal non-equilibrium, two-phase flows
with flash-boiling and condensation. Typically, such non-equilibrium phase-change models have been
studied in one-dimensional flow, but the goal of the present work is to create and utilize a multi-dimen-
sional CFD implementation. The simulations are able to handle general polyhedral meshes, an important
convenience for irregular channel or nozzle shapes. The model is applied to flash-boiling flow in short
channels and validated against experimental measurements. The simulations predict the multi-dimen-
sional features that have been observed in the past in experiments. Nozzle choking is also observed in
the calculations.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

When a hot fluid has a vapor pressure that falls between the up-
stream and downstream pressure in a nozzle, the discharge of the
nozzle may be sensitive to the effects of interphase heat transfer.
This heat transfer will take place on small length scales and will
be affected by interfacial and turbulent dynamics. Neither the de-
tails of the small-scale temperature fluctuations, the amount of
interfacial area, nor the small scale velocity features are known.
Despite these complexities, the limits of thermal equilibrium and
frozen flow have been useful for very long and very short nozzles,
respectively. An intermediate closure that addresses the finite rate
of heat transfer between phases would provide wider applicability
to nozzle geometries. If the analyses could further be extended to
multiple dimensions, then multi-dimensional CFD techniques
could be applied to studying flash-boiling nozzles.

The rate of heat transfer and its role as a limiting factor in phase
change depends largely upon the temperature of the fluid. Pres-
sure-driven phase change can be viewed as a spectrum with cavi-
tation at the cold end of the spectrum and flash-boiling at the hot
end. In some cavitating flows, the time scales of heat transfer can
be assumed to be much faster than the time scales governing accel-
eration due to pressure (Knapp et al., 1970). Consequently, for
small, high-speed cavitating flows, thermal equilibrium assump-
tions have produced successful cavitation models (Schmidt et al.,
1999b). Under such conditions, the vapor density of the cold fluid
ll rights reserved.

idt).
is very small and is not significant when compared to the liquid
density. Thus little energy transfer is required to produce vapor.
However, in the nozzles that will be considered in the present
work, equilibrium assumptions would lead to predictions of unre-
alistically high velocities, on the order of a 1000 m/s.

In contrast, for hot liquid the phase change is more like a boiling
process. The difference between the saturated vapor density and
saturated liquid density decreases at higher temperature. Conse-
quently, the liquid must provide more energy per unit volume of
vapor. Thus flashing nozzle simulations require additional model-
ing of finite-rate heat-transfer processes. Further distinctions are
provided by Sher et al. (2008), who reviewed and categorized typ-
ical modeling approaches. Classic studies by Wallis (1980), Fauske
(1965), Henry and Fauske (1971) and Moody (1965) have explored
the role of thermal non-equilibrium in a variety of channel geom-
etries. In an interesting bridge between the two regimes, Vortmann
et al. (2003) have modeled cavitation with a return-to-equilibrium
approach.

Kato et al. (1994) presented an analysis that indicates when ther-
mal effects limit bubble growth. Kato et al. numerically integrated
the Rayleigh–Plesset equation and the energy equation. For a bound-
ary condition at the phase interface, Kato calculated the rate of en-
ergy transferred out of the liquid by conduction, as the interface
produced vapor. The vapor production gave the growth rate of the
bubble, and thus the wall velocity. One of their main observations
was the significance of Jakob number and the change in governing
phenomena over the lifetime of a growing bubble.

Mach number effects are another phenomenon thought to play
an important role in the flashing of superheated fluids. Simões
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Moreira and Bullard (2003) modeled high-speed jets emanating
from short nozzles, where expansion waves formed downstream
of a liquid core. They applied the solution of a Chapman–Jouguet
wave to the process of flash-boiling and predicted choked flow
downstream of the wave.

Empirical observations are also essential. In experiments such
as Reitz (1998), the mass flow rate through a short nozzle was
clearly a function of upstream liquid temperature. As the temper-
ature of the upstream liquid approached the vapor temperature at
the upstream conditions, mass flow rate decreased. When heated
to a point just below the upstream vapor temperature, the flow
rate dropped abruptly. Kim and O’Neal (1993) made observations
of refrigerants flashing in short tubes. Another phenomena that
can occur in slightly subcooled flows are condensation shocks, as
observed in experiments by Yu et al. (1987).

However, the complex physics are only the first obstacle to cre-
ating CFD simulations of phase change. Depending on the speed
and size of the channel flow, the rate of heat transfer can range
from slow, e.g. the thermal equilibrium limit, to very fast, namely
the frozen-flow limit. When the rate of phase change is extremely
fast, numerical stiffness problems can occur. Unless an implicit
model of heat transfer is closely coupled to conservation of mass
and momentum equations, the resulting scheme may be limited
to very small time steps. For application to transient, three-dimen-
sional flow, severe stability constraints would render an explicit
model prohibitively expensive.
2. Approach

Once it is decided to pursue modeling of thermal non-equilib-
rium, one must next decide whether to employ a full two-phase
solution with separate transport equations or a pseudo-fluid ap-
proach where the mixture of phases is represented by a continuous
density variable. The former approach offers complete generality,
including separate velocities for each phase, while the latter ap-
proach offers relative simplicity and expediency. For an example
of one-dimensional modeling using separate conservation equa-
tions for each phase, see Boure et al. (1976).

For the current investigation, the pseudo-fluid approach was
employed. Though the inclusion of slip has been shown to be
important by Moody (1965) and by Henry and Fauske (1971) in
one-dimensional analyses, the pseudo-fluid approach still allows
relative velocity between the phases on the resolved scales in mul-
ti-dimensional CFD. For this reason, a no-slip model is less restric-
tive in higher dimensions than in one-dimension. For example, an
annular flow might have low speed vapor surrounding a high
speed liquid core, which can be resolved with a no-slip model in
two-dimensions. Some of the limitations of this sub-grid no-slip
assumption will be investigated in the results.

A benefit of the pseudo-fluid approach without assumption of
slip is that no explicit model for interphase drag is required. By tak-
ing the limit of infinitely fast momentum exchange, one avoids the
numerical problems of very high-drag rates and tight coupling be-
tween phase velocities, such as high computational cost and prob-
lems with numerical instability. The main risk of using the pseudo-
fluid approach is that interphase momentum transfer will be over-
predicted.

Given the assumption of no sub-grid slip, the emphasis then
shifts to the thermal non-equilibrium modeling. A successful
example of such an approach is the work of Valero and Parra
(2002), who employed an ”Equal Velocity Unequal Temperature”
for modeling one-dimensional critical two-phase flow. They closed
the basic conservation equations using a model of heat and mass
transfer from spherical bubbles. They investigated their model pre-
dictions for short nozzles and found that a modification to include
the effects of bubble nuclei was necessary. Their modified model
was able to reliably match mass flow rate measurements in nozzles
with length-to-diameter ratios from 0.3 to 3.6.

In the current work, we choose not to rely on detailed models of
interfacial area, convection coefficient, and temperature field in the
turbulent, two-phase heat-transfer process. Given the nearly
intractable complexity of the detailed heat-transfer process, it is
pragmatic to rely on an empirical model that encapsulates the
physics in simple correlation. The initial nuclei size and number
density are not usually available, nor is the assumption of spherical
bubbles always justifiable. As an alternative means of closure, the
Homogenous Relaxation model (Downar-Zapolski et al., 1996) is
employed. Like most proposed closures for two-phase channel
flow, this model was originally developed for flow in one-dimen-
sion and has been mostly explored only for one-dimensional sce-
narios. Duan et al. (2006) employed the Homogenous Relaxation
Model in simulating the evolution of external multi-dimensional
flow in a Lagrangian particle simulation. However, the correlation
used by Duan et al. is several orders of magnitude slower than
the original correlation of Downar-Zapolski et al. The present work
explores the flashing nozzle behavior in multiple dimensional
channel flow by constructing an Eulerian computational fluid
dynamics code around the Homogenous Relaxation Model.

There is some reason to believe that such an extension of a one-
dimensional closure to multiple dimensions could be possible. In
the only example known to the authors of multi-dimensional
CFD calculations of internal flashing flow, Minato et al. (1995) used
a simple one-dimensional non-equilibrium two-phase flow analy-
sis to close a two-fluid, two-dimensional, model of flashing flow.
Their approach was quite computationally expensive, limiting
their investigation to extremely coarse meshes. This initial study
has garnered no attention from other researchers (as measured
by subsequent citations) and has not prompted any further studies
in this area in the 14 intervening years since its publication. Given
the limited computational resources of the time, the ability to cal-
culate two-dimensional flashing flow, even on their very coarse
mesh, is most remarkable.

The present work investigates the potential of extending the
one-dimensional HRM approach to multiple dimensions, for use
as closure of a multi-dimensional CFD code. In contrast to Minato,
we neglect interphase slip on the sub-grid scale and use a pseudo-
fluid approach, saving the computational cost of solving separate
momentum equations. The success of this approach will offer
new possibilities for multi-dimensional simulation of flash-boiling
flow. The challenge will be constructing a stable coupling between
the HRM closure and the basic conservation equations.
3. Derivation of governing equations

In as much as possible, the flash-boiling flow simulation pre-
sented here relies on basic conservation laws. Given the assump-
tion of no-slip within a cell, the pseudo-fluid approach produces
the same basic conservation laws as for a single fluid. These are gi-
ven below for conservation of mass, momentum, and energy. In the
following equations, the variable / represents the mass flux and s
is the stress tensor. In the present study, only laminar flow is con-
sidered, but the stress tensor does include Stokes’ hypothesis for
treating the second coefficient of viscosity.

@q
@t
þr � / ¼ 0 ð1Þ

@qU
@t
þr � ð/UÞ ¼ �rpþr � s!

!

ð2Þ

The energy equation is included, even though it is of little signifi-
cance in the current work. All the simulations in the current study
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are run under adiabatic conditions and simulations proceed until a
steady-state is reached. Hence, total enthalpy will be constant in
these limits. However, in order to guarantee time–accuracy, an
equation for energy or enthalpy is required. The following form is
used, neglecting the kinetic energy of the fluid, viscous energy dis-
sipation, and conduction.

ð@qhÞ
@t
þr � ð/hÞ ¼ @p

@t
þ U
!
�rp ð3Þ

Eqs. (1)–(3) are not a closed system of equations. In single-phase
flow, an equation of state would be required. However, where
non-equilibrium heat transfer governs much of the flow dynamics,
there is no equation of state that would suffice. The two-phase mix-
ture represented by the pseudo-fluid assumption is not in thermo-
dynamic equilibrium. As explained above, our hypothesis is that a
relaxation to equilibrium would be an appropriate model for closing
the equations. For this purpose, we employ the Homogenous Relax-
ation Model.

The Homogenous Relaxation Model is based on a linearized
expansion proposed by Bilicki and Kestin (1990). The general mod-
el form originates with refrigeration modeling by Einstein (1920).
It has been used by numerous others for one-dimensional two-
phase flow. The model represents the enormously complex process
by which the two phases exchange heat and mass. The model form
determines the total derivative of quality, the mass fraction of
vapor.

Dx
Dt
¼

�x� x
H

ð4Þ

Eq. (4) describes the exponential relaxation of the quality, x, to the
equilibrium quality, �x , over a timescale, H. The equilibrium quality
is a function of the enthalpy and the saturation enthalpies at the lo-
cal pressure, as given by Eq. (5) with bounds at zero and unity.

�x ¼ h� hl

hv � hl
ð5Þ

The quality, the mass fraction of vapor, is calculated from each cell’s
void fraction, a for densities falling inside the saturation dome.

x ¼ aqv
q

ð6Þ

The void fraction in the two-phase region is, in turn, a function of
the local density as well as the saturated vapor and liquid densities
at the local pressure.

a ¼ ql � q
ql � qv

ð7Þ

The timescale in Eq. (4) is empirically fit to data describing
flashing flow of water in long, straight pipes. The work of Dow-
nar-Zapolski et al. (1996) provides two correlations, one recom-
mended for relatively high pressures, above 10 bar, and a
different correlation for lower pressures. In the low-pressure form,
for upstream pressures below 10 bar, the best-fit values suggested
by Downar-Zapolski et al. for flashing water appear in Eq. (8). The
empirical parameters include H0 and the two exponents. These
values are H0 ¼ 6:51� 10�4 [s], a = �0.257, and b = �2.24.

H ¼ H0aawb ð8Þ

The variable a represents the volume fraction of vapor and w is a
dimensionless pressure difference between the local static pressure
and the vapor pressure, as defined in Eq. (9). The absolute value is
used in the present work since the pressure in the domain can fall
below the saturation pressure.

w ¼ psat � p
psat

����
���� ð9Þ
A slightly different fit is suggested for upstream pressures above 10
bar, as given by Eq. (10).

H ¼ H0aa/b ð10Þ

The dimensionless pressure /, defined in Eq. (11), differs from the
definition in Eq. (9) by including the critical pressure pc . The coeffi-
cient values in the high-pressure correlation, Eq. (10) are
H0 ¼ 3:84� 10�7 [s], a ¼ �0:54, and b ¼ �1:76. Both correlations
will be explored in this work.

/ ¼ psat � p
pc � psat

����
���� ð11Þ

In the present study, the flow at the channel inlets were pure liquid.
With no vapor present, the phase change timescale would be un-
bounded and vaporization would never begin. To avoid numerical
overflow and to provide a means of treating boiling incipiency, a
very small lower bound of 10�15 was applied. In all likelihood, dis-
solved gasses could provide an incipient void fraction in excess of
this value. As will be discussed in the conclusions section, this is a
likely area for future study.

If the continuity equation is used for solving for mixture density
and conservation of momentum is used for velocity, then Eq. (4) is
primarily responsible for determining the pressure. In contrast to
incompressible or low-Mach number Navier–Stokes solvers, the
current model does not seek a pressure that projects velocity into
consistency with the continuity equation. Instead, we solve for the
pressure that satisfies the chain rule and employs the continuity
equation indirectly. Through the chain rule, the pressure responds
to both compressibility and density change due to phase change.
The behavior of pressure is seen to be both hyperbolic and para-
bolic, while the phase-change model appears as a source term.

In order to provide close coupling with velocity, the momentum
equations and continuity equation are combined with Eq. (4) to
provide a pressure equation. The procedure starts with conserva-
tion of mass and momentum, Eqs. (1) and (2), respectively. The
next step is to discretize the momentum equation. This discretiza-
tion can take many forms, but they can all be represented generally
using the form of Eq. (12).

apUp ¼ HðUÞ � rp ð12Þ

This expression represents the discrete equation applied to each cell
in the domain. The subscript p refers to the point of interest using
the notation of Ferziger and Peric (2002). The H operator represents
convection and diffusion as discretized equation coefficients multi-
plied by neighboring velocities plus source terms. The coefficient ap

is the coefficient term of the matrix of velocity equations.
The chain rule can also be used to express the total derivative of

density, as in Eq. (13). The chain rule stands in place of the typical
equation of state, since this is a simulation of non-equilibrium
fluid. Note that for thermodynamic non-equilibrium, density is a
function of three variables: pressure, quality, and enthalpy (Bilicki
and Kestin, 1990).

Dq
Dt
¼ @q
@p

����
x;h

Dp
Dt
þ @q
@x

����
p;h

Dx
Dt
þ @q
@h

����
p;x

Dh
Dt

ð13Þ

Currently, the last term in Eq. (13) is neglected due to the near-isen-
thalpic nature of the adiabatic channel flows currently considered.
The first term on the right side represents a contribution to the den-
sity change due to two-phase compressibility. This two-phase com-
pressibility is calculated as a mass average of the two single-phase
compressibilities. This term could be significant in transonic flow. In
cases where the two-phase compressibility is not significant, this
term can be omitted, which offers the advantage of producing a
symmetric matrix for the discretized pressure equations. Calcula-
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tions where the compressibility was neglected are explicitly men-
tioned below.

If we subtract conservation of mass, Eq. (1), from Eq. (13) then
the left side gives an expression for velocity divergence at the new
time step.

�qr � U ¼ @q
@p

����
x;h

Dp
Dt
þ @q
@x

����
p;h

Dx
Dt

ð14Þ

Using Eq. (12) and Up in place of U, the momentum equation can be
coupled with the chain rule to produce an equation for pressure.

@q
@p

����
x;h

@p
@t
þ @q
@p

����
x;h

ðU � rpÞ þ qr � H
ap

� �
� qr 1

ap
rpþ @q

@x

����
p;h

� Dx
Dt

¼ 0 ð15Þ

This is a mixed-character transient convection/diffusion equation.
The transmission of pressure waves, which is essential for any com-
pressible flow calculation, is allowed by the transient and convec-
tive terms in the equation while the pressure is kept in range and
is damped by the Laplacian term. For low-Mach number flows the
terms containing @q

@p

���
x;h

can be dropped. The terms were retained
for some calculations but dropped for other calculations since they
change mass flow rate very little but slow the rate of solver conver-
gence. Without the compressibility terms, the linear system is sym-
metric and can be solved with approximately half the cost of the full
system of equations. Results with and without the compressibility
terms are reported in the next section.

4. Numerical approach

An attractive feature of this pressure equation is that most of
the terms are linear in p plus the model in Eq. (1) can be inserted
directly into the last term. In the limit of constant density, an
incompressible formulation is recovered. Schmidt et al. (1999a)
used a similar idea (but neglecting the derivative of density with
respect to pressure) in a two-step projection method on a stag-
gered mesh approach. The implementation on a staggered mesh
was well-suited for their two-dimensional structured grid solver.
In order to facilitate the application of the current model to
three-dimensional solutions with unstructured, polyhedral mesh
support, the current implementation will use a collocated variable
approach.

The first step in each time step is the solution of conservation of
mass, Eq. (16). This is done implicitly.

@q
@t
þr � ð/vqÞ ¼ 0 ð16Þ

Here, the volumetric flux, /v , is based on the velocity field from the
previous time step, interpolated to cell faces. The new value of den-
sity from Eq. (16) is interpolated to cell faces and a new mass flux /
is calculated. Next, the thermodynamic variables such as void frac-
tion, quality, and compressibility are updated using the new value
for density.

As in the PISO algorithm (Issa, 1986), the velocity field is pre-
dicted using a lagged pressure, indicated by the superscript n.
The equation for this predicted velocity, U0, is given in Eq. (17). La-
ter, when pressure is updated, the additional contribution from the
change in pressure will be used as a corrector to the velocity field.

ð@qU0Þ
@t

þr � ð/U0Þ ¼ �rpn þr � ðlrU0Þ ð17Þ

Eq. (17) represents three linear systems of equations, one for each
component of velocity, and is solved implicitly with the pressure
gradient acting as an explicit source term, in the form of Eq. (12).
The ratio of the off-diagonal terms to diagonal terms that ap-
pear in Eq. (12) have dimensions of velocity and can be thought
of as a velocity field prior to pressure projection, as indicated in
Eq. (18).
U� ¼ H
ap

ð18Þ
This velocity is interpolated to face centers to produce a flux field,
/�, that is used in Eq. (20).

With multiple PISO iterations, the non-linearity of the momen-
tum equation can be accommodated. However, the phase-change
model presents an additional challenge: the last term in Eq. (15),
representing the effects of the phase-change model is highly
non-linear and strongly dependent on pressure. As a shorthand,
we define this term as M in Eq. (19). Using linearization, the PISO
iterations also provide secant method iterations for semi-implicitly
including the pressure, as shown in Eq. (20). The superscripts k and
kþ 1 indicate the previous and current PISO iteration, respectively.
M � @q
@x

����
p;h

�x� x
H

� �
ð19Þ

1
q
@q
@p

����
x;h

@qp
@t
þrqpkþ1U

� �
þ qr � /�

� qr 1
ap
rpkþ1 þMðpkÞ þ @M

@p
ðpkþ1 � pkÞ ¼ 0 ð20Þ
Typically, two to five PISO/secant iterations were employed, each
requiring solution of the pressure equation. Without the compress-
ibility terms, the linear system for pressure is symmetric and is
solved using a diagonal incomplete Cholesky preconditioned conju-
gate-gradient method. With the full pressure equation, a diagonal
incomplete LU preconditioned bi-conjugate gradient is used. The
non-orthogonal parts of the Laplacian are handled with a deferred
correction approach that also benefits from the multiple iterations
if the computational mesh is highly skewed (Jasak, 1996). Once
Eq. (20) has been solved, the pressure field is used to correct the
fluxes and the time step is completed. The pressure must also be
updated in the momentum equation. This is done by reconstructing
the face-based pressure gradients into a cell-centered gradient. This
reconstruction process can produce spurious out-of-plane velocities
in two-dimensions that are discarded.

This approach produces a set of equations that are solved on an
arbitrary polyhedral mesh in two and three-dimensions. The
underlying framework is provided by OpenFOAM (Weller et al.,
1998), which permits rapid construction of CFD codes in an ob-
ject-oriented framework that includes a wide choice of discretiza-
tion schemes. The current implementation is stable enough for
two-dimensional calculations and has been used in a few three-
dimensional calculations. However, the cases where experimental
data are available for validation are all two-dimensional. Properties
were evaluated from lookup tables generated with Lemmon et al.
(2007). Viscosity was calculated from a volume-weighted average,
an assumption frequently used in pseudo-fluid CFD simulation
(Kubota et al., 1989; Chen and Heister, 1994; Schmidt et al.,
1999b; Senocak and Shyy, 2002).

All variables were located at cell centers, except for interpolated
fluxes located at cell faces. For all calculations, the flux terms were
evaluated using a Gamma TVD scheme and the Laplacian is discret-
ized according to the recommendations of Jasak et al. (1999). Fixed
pressure boundary conditions and zero gradients of velocity were
typically used at inlets and exits, while the walls were treated as
no-slip. Courant numbers for time-stepping ranged up to 1.2.
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5. Results and validation

All the test cases used for validation and study were channel
flows containing water. Though the simulation is transient, the
experiments were always steady-state, so all calculations were
run until both the inflow and outflow had stabilized. The typical
flash-boiling experiment is a straight channel with a sharp inlet.
The sharp corner creates the potential for a separated flow with
strong two-dimensional flow features. For convenience, these
kinds of flows were simulated as axisymmetric flow. To avoid
imposing boundary conditions where sharp gradients would be
present, a plenum was added to both the inlet and outlet side of
the channel, as shown in Fig. 1. The addition of the plenum pro-
vides some separation distance between the imposed boundary
conditions and the region of interest. An unstructured quadrilateral
mesh was used throughout the whole domain.

A high temperature, high pressure test case was taken from Tik-
honenko et al. (1978), who explored critical flow of hot water in
various pipes with a sharp inlet. These experiments include data
from pressure taps placed along the length of the pipe. In this sim-
ulation, a channel with a 25 mm diameter and 250 mm length was
simulated. The inlet conditions were saturated water at 4 MPa and
the downstream pressure was specified to be one atmosphere.

First, this test case was used to check grid independence of the
solution. Even though a perfectly sharp corner represents a singu-
larity, the flow should show an acceptably low sensitivity to the
mesh resolution in order for the results to be useful. The nozzle
was meshed using a coarse mesh of 3500 cells and a finer mesh
with 15 thousand cells. A comparison of predicted wall pressures
from the several calculations can be seen in Fig. 2. Both the high-
pressure and low-pressure correlations (see Eqs. (8) and (10)).
The coarser mesh is sufficiently close to the fine mesh result, such
that the modeling assumptions are a larger source of error than the
discretization error.

The results for static pressure along the pipe wall in Fig. 2 also
permit a comparison of the two correlations, as well as revealing
some of the internal flow features. The experimentally-measured
pressure shows a slight local minimum near the inlet corner due
to the separated flow. As the computational results will show,
the liquid forms a vena contracta downstream of the inlet. Once
past the vena contracta, the pressure partially recovers and then
drops precipitously at the exit.

The computational results follow the expected trend. There is a
local pressure minimum on the wall just downstream of the inlet
corner in the simulations. The pressure recovers slightly and then
remains nearly constant along the nozzle length until just up-
stream of the nozzle exit. The pressure at the nozzle exit decreases
dramatically due to rapid flashing near the exit plane. However,
both correlations under-predict the rate of flash-boiling, though
the low-pressure correlation is especially far off. The high-pressure
correlation produces pressures that are much closer to the experi-
mental measurements.

In addition to predicting pressure, the computational results
show other features of interest, such as pressure, velocity, density,
and the rate of change of quality. These results can be used to ex-
plain the nozzle behavior under these flow conditions.

As in both single-phase and cavitating nozzles, the flow sepa-
rates off of the sharp inlet corner (Schmidt, 1997). In an incom-
Fig. 1. A typical two-dimension
pressible flow, the pressure would be expected to be extremely
low downstream of this corner, due to the separated flow and
the constraint of a divergence-free velocity field. However, with
flashing flow, the decrease in pressure creates an increase in the
rate of phase change. The flashing of the liquid creates a positive
velocity divergence that allows the contraction to occur with a rel-
atively small dip in pressure behind the inlet corner.

The contours of mass fraction are visible in the upper half of
Fig. 3. Because of the extreme density ratio between the liquid
and vapor, the vapor formed near the corner does not correspond
to a significant portion of the liquid mass. This result is consistent
with the decision not to include a separate momentum equation
for the vapor phase, since transported momentum would be pro-
portional to vapor mass. The tiny mass fraction of vapor does not
seem to warrant a separate momentum equation.

The contours of volume fraction in Fig. 3 show this rapid vapor
generation at the inlet corner. The two-phase density in the com-
putational domain ranges from the initial saturated liquid density
down to a value of 1:5 kg=m3. The sharp corner induces a phase
change around the outer periphery of the flow. This vapor remains
as an outer sheath for the length of the nozzle, as previously de-
scribed in experimental studies (Sher et al., 2008).

This radial density and velocity profiles are interesting features
of a multi-dimensional CFD study of flashing nozzles. It serves as
an example of macroscopic interphase slip, where the liquid core
moves with one velocity at the inner radius in the nozzle and the
vapor could move with a different velocity near the nozzle walls.

Between x/D of 2 and 8, very little change occurs in the axial
direction. The pressure gradient is minimal and there is little
change in the radial density or velocity profile. However, near
the nozzle exit plane, a dramatic change occurs, as shown in Fig. 4.

Figs. 2 and 4 indicate that part of the pressure drop across the
nozzle occurs at the inlet, followed by a relatively flat pressure re-
gion, and then a second pressure drop at the exit. As the pressure
drops further below the vapor pressure of 4 MPa, the rate of phase
change increases. The nature of the timescale correlation provided
by Downar-Zapolski et al. (1996) also captures the effect of
increasing interfacial area for phase change, due to the dependence
on vapor volume fraction. So, with the creation of vapor, the rate of
phase change is further increased. Note how the timescale shown
in Fig. 5 correlates with the creation of vapor. By conservation of
mass, the drop in density is accompanied by an increase in axial
velocity. Conservation of momentum then indicates that pressure
drops further. This pressure drop, in turn, feeds back into the flash-
ing process. The pressure finally reaches the downstream value
just outside of the nozzle.

The anticipation that the flashing flow process would continue
just beyond the nozzle motivated the decision to place the compu-
tational boundary downstream of the nozzle. However, the model
does not account for the presence of non-condensible gasses, such
as occur in air. Fortunately for this case, it appears from the veloc-
ity field that air is not entrained into the near-exit flow. The strong
favorable pressure gradient near the nozzle exit discourages the
counter-flow of air and produces no recirculating flow in the exit
plenum of the computational domain.

The ability of the model to predict choking was also investi-
gated. The high liquid temperature and low downstream pressure
suggests that the flow should be choked (Fauske, 1965). Computa-
al computational domain.
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Fig. 2. Static pressure versus position at the wall for saturated water at 4 MPa discharging through a 25 mm tube with L/D = 10

Fig. 3. Predicted vapor mass fraction and volume fraction in the 4 MPa saturated water experiment of Tikhonenko. The domain has been reflected around the axis of
symmetry so that two fields can be shown simultaneously.

Fig. 4. Predicted pressure and equilibrium mass fraction �x in the 4 MPa saturated water experiment of Tikhonenko.
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tionally, this is indeed the case. The above simulation was re-run
with the downstream pressure set to two atmospheres, which re-
duces the pressure drop across the nozzle by 2.6%. The computed
mass flow rate changed by less than 0.03%.



Fig. 5. Predicted velocity magnitude and the common log of the phase change timescale H for the 4 MPa saturated water experiment of Tikhonenko.
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The second test case was chosen to emphasize two-dimensional
effects. In these experiments Fauske (1965) studied saturated
water discharge through short tubes. He noted the maximum dis-
charge rates as a function of L/D and upstream stagnation pressure.
Of the various nozzles that Fauske tested, a relatively short nozzle
was chosen for validation, with L=D ¼ 4, in the next test case. It is
expected that the inlet corners will cause large variations of void
fraction and velocity in the radial direction. These two-dimensional
effects are likely to be more pronounced than in the longer nozzle
discussed above.

First, the mass flow rates were compared for 6.35 mm diameter
tubes at stagnation pressures of 1.37 MPa, 4.13 MPa, and 6.89 MPa.
The calculated mass flow rates using the low-pressure correlation,
Eq. (8) are compared to Fauske’s measurements in Fig. 6. The
agreement of the data is excellent, with the computed results lying
within the scatter of the experimental data. The good agreement
produced by the low-pressure correlation is somewhat surprising
and much better than the high-pressure correlation, Eq. (10),
which under-predicted mass flow rate by a factor of two.

In the calculations shown back in Fig. 2 the high pressure corre-
lation performed better, as one might expect given the 4 MPa up-
stream pressure. In the simulations with Fauske’s experiments,
the low-pressure correlation was clearly better. This observation
is especially curious given the similarities between the two exper-
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Fig. 6. Measured (Fauske, 1965) mass flow rates for a nozzl
iments. Tikhonenko’s experiment was at an upstream pressure
very close to the middle of the range of Fig. 6 and both were satu-
rated. The L/D ratio for the data in Fig. 6 are for L/D of 4, compared
to Tikhonenko’s L/D of 6. The diameter of Tikhonenko’s nozzle was
about four times larger than Fauske’s, which could be a factor.

Next, the internal flowfield details were observed in order to
understand how the two-dimensional effects were manifesting
themselves in the flowfield. The first figure illustrates a simulation
of Fauske’s experiment with an upstream pressure of 1.38 MPa
(200 PSIA). Fig. 7 shows the volume fraction of vapor in the upper
half of the figure and approximate stream lines in the bottom half.
The streamlines are not from a solution of a stream function, since
the velocity field is not divergence-free, but are rather calculated
from Runge–Kutta integration of particle trajectories using the fro-
zen, discrete velocity field, incurring a discretization error compa-
rable with the CFD computations.

The streamlines in Fig. 7 show the separation and formation of a
vena contracta just downstream of the nozzle inlet. The outer flow
recirculates downstream of this corner, forming an area of high va-
por concentration. This outer fluid likely has a long residence time
in the nozzle due to the recirculation, which may explain why Fau-
ske did not observe any sensitivity to nucleation. The recirculating
fluid has a relatively long opportunity to change phase, compared
to the central flow. As the vapor fraction shows, the core begins to
4 5 6 7

 Pressure [MPa]

e with L/D = 4 compared with the present calculations.



Fig. 7. Simulation of Fauske’s experiment with 1.38 MPa saturated liquid discharge. This figure shows volume fraction of vapor and approximate streamlines.
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vaporize closer to the exit. The predictions of the annular vapor
sheath and core vaporization are consistent with Fauske’s observa-
tions and published sketches of the flow.

The phase change process is accompanied by acceleration as a
consequence of conservation of mass and momentum. This accel-
eration is evident in the upper half of Fig. 8. The initial contraction
near the throat of the vena contracta produces an acceleration as
the core flow passes through a reduced cross-sectional area in
the nozzle. A second acceleration occurs near the exit, where vapor
is formed.

As vapor is formed, more interfacial area is available for heat
transfer, which feeds back into the phase change process by short-
ening the timescale. The feedback of between interfacial area and
the timescale can be seen in the lower half of Fig. 8, where the low-
est values of the timescale represent regions where the fluid will
move more quickly towards the equilibrium quality.

The above figures were only considering the lower end of
the range of upstream pressures. However, the general charac-
ter of the nozzle flow in these saturated discharge calculations
is relatively insensitive to variations in the upstream pressure.
Though velocities increase with increasing upstream pressure,
the vena contracta remains a relatively constant feature. The
amount of vapor does not change much with a factor of five in-
crease in upstream saturation pressure, as shown in Fig. 9. The
stability of the vena contracta is well-known from previous
studies of cavitating flow and single-phase nozzle flow (Nurick,
1976).
Fig. 8. Simulation of Fauske’s experiment with 1.38 MPa saturated liquid discharge. Th
phase change.
6. Conclusions

The Homogenous Relaxation Model has been tested in multi-
dimensional CFD calculations. The non-equilibrium thermodynam-
ics in conjunction with the assumption of no sub-cell interphase
slip produced a model that required a special numerical approach.
A method for connecting the predicted phase change to conserva-
tion of mass and momentum was developed that used the chain
rule in lieu of a typical equation of state. This new numerical con-
struction produced a closed set of equations that could be solved
using the finite volume method. The model was implemented into
a CFD code and demonstrated with two-dimensional calculations.
Experiments from the open literature were used for validation with
measurements of wall pressure and mass flow rate. The simula-
tions showed reasonably good fidelity in predicting pressures at
nozzle walls in the case of saturated discharge. Choking was also
predicted under these conditions.

The results indicate that a properly formulated one-dimensional
closure for flashing flow can be extended to multi-dimensional com-
putations. The model used in the present work, the Homogenous
Relaxation Model, performed well in various tests of flashing flow
without adjustment to the previously reported empirical parame-
ters, though neither of the two correlation suggested by Downar-
Zapolski et al. (1996) were sufficient for all cases. Given that the pres-
ent work is an extension of the Homogenous Relaxation Model be-
yond its original intent, some adjustment of these parameters
might be a useful exercise for future work. The assumption of equal
is figure shows velocity magnitude and the common logarithm of the timescale of



Fig. 9. Comparison of the volumetric vapor fraction with 1.38 MPa saturated liquid discharge (upper half) and 6.89 MPa (lower half).
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velocities and unequal temperatures does appear sufficient for most
of the channel flow studied here. Certainly, the effects of turbulent
flow and mixing are not represented in the current framework,
and are likely candidates for future development.

Nucleation effects of dissolved gasses is another extensive area
of study that might impact current model accuracy. In the current
work, the void fraction is arbitrarily limited to a small positive va-
lue. A more sophisticated approach would be to implement a
nucleation factor in the calculation of minimum void fraction
based on existing nucleation models. Though this is not anticipated
to alter predictions near the inlet corners, where phase change is
geometrically induced, flashing could be promoted near the center
of the channels.
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